دانلود مقاله ISI انگلیسی شماره 107808
ترجمه فارسی عنوان مقاله

اوراق بهادار با ارزش در معرض خطر با استفاده از تکنیک های برنامه ریزی عدد صحیح محاسبه می شود

عنوان انگلیسی
Computing near-optimal Value-at-Risk portfolios using integer programming techniques
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
107808 2018 26 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : European Journal of Operational Research, Volume 266, Issue 1, 1 April 2018, Pages 304-315

ترجمه کلمات کلیدی
تحلیل ریسک، ارزش در معرض خطر، تخصیص نمونه کارها، آرامش برنامه ریزی صحیح ،،
کلمات کلیدی انگلیسی
Risk analysis; Value-at-Risk; Portfolio allocation; Integer programming relaxations,;
پیش نمایش مقاله
پیش نمایش مقاله  اوراق بهادار با ارزش در معرض خطر با استفاده از تکنیک های برنامه ریزی عدد صحیح محاسبه می شود

چکیده انگلیسی

Value-at-Risk (VaR) is one of the main regulatory tools used for risk management purposes. However, it is difficult to compute optimal VaR portfolios; that is, an optimal risk-reward portfolio allocation using VaR as the risk measure. This is due to VaR being non-convex and of combinatorial nature. In particular, it is well-known that the VaR portfolio problem can be formulated as a mixed-integer linear program (MILP) that is difficult to solve with current MILP solvers for medium to large-scale instances of the problem. Here, we present an algorithm to compute near-optimal VaR portfolios that takes advantage of this MILP formulation and provides a guarantee of the solution’s near-optimality. As a byproduct, we obtain an algorithm to compute tight upper bounds on the VaR portfolio problem that outperform related algorithms proposed in the literature for this purpose. The near-optimality guarantee provided by the proposed algorithm is obtained thanks to the relation between minimum risk portfolios satisfying a reward benchmark and the corresponding maximum reward portfolios satisfying a risk benchmark. These alternate formulations of the portfolio allocation problem have been frequently studied in the case of convex risk measures and concave reward functions. Here, this relationship is considered for general risk measures and reward functions. To illustrate the efficiency of the presented algorithm, numerical results are presented using historical asset returns from the US financial market.