دانلود مقاله ISI انگلیسی شماره 110373
ترجمه فارسی عنوان مقاله

رگرسیون بردار پشتیبانی همراه با انتخاب طول موج به عنوان یک روش تحلیلی قوی

عنوان انگلیسی
Support vector regression coupled with wavelength selection as a robust analytical method
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
110373 2018 25 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Chemometrics and Intelligent Laboratory Systems, Volume 172, 15 January 2018, Pages 167-173

ترجمه کلمات کلیدی
رگرسیون بردار پشتیبانی، حداقل مربعات جزئی، انتخاب طول موج، طیف سنجی، پشتیبانی رگرسیون رگرسیون-بازگشتی پشتیبانی از حذف،
کلمات کلیدی انگلیسی
Support vector regression; Partial least squares; Wavelength selection; Spectroscopy; Support vector regression-recursive feature elimination;
پیش نمایش مقاله
پیش نمایش مقاله  رگرسیون بردار پشتیبانی همراه با انتخاب طول موج به عنوان یک روش تحلیلی قوی

چکیده انگلیسی

This paper assesses the support vector regression (SVR) as a robust alternative to partial least squares (PLS) in multivariate calibration using twelve public domain NIR spectroscopy datasets. It also proposes the use of the support vector regression – recursive feature elimination (SVR-RFE) algorithm to select the most informative wavelengths for SVR models. Models based on full spectra were built using SVR and PLS, while wavelength selection methods were carried out using SVR-RFE, interval PLS (iPLS), backward interval PLS (biPLS), synergy interval PLS (siPLS), and successive projection algorithm PLS (SPA-PLS). The prediction performance of tested methods was measured by means of the root mean squared error (RMSE), index of agreement (d-index) and R2 on the test set. SVR-based models yielded the best results in 8 out of 12 datasets, 4 of them using full spectra and 4 relying on SVR-RFE selected wavelengths. Statistical comparison was carried out for the wavelength selection algorithms using Friedman test, which pointed the SVR-RFE as a competitive technique when compared to the other algorithms. This study revealed SVR as a robust alternative to PLS, especially when SVR-RFE is employed for wavelength selection.