دانلود مقاله ISI انگلیسی شماره 110379
ترجمه فارسی عنوان مقاله

تجزیه و تحلیل حساسیت جهانی با استفاده از رگرسیون بردار پشتیبانی

عنوان انگلیسی
Global sensitivity analysis using support vector regression
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
110379 2017 19 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Mathematical Modelling, Volume 49, September 2017, Pages 587-598

پیش نمایش مقاله
پیش نمایش مقاله  تجزیه و تحلیل حساسیت جهانی با استفاده از رگرسیون بردار پشتیبانی

چکیده انگلیسی

Global sensitivity analysis (GSA) plays an important role in exploring the respective effects of input variables on response variables. In this paper, a new kernel function derived from orthogonal polynomials is proposed for support vector regression (SVR). Based on this new kernel function, the Sobol’ global sensitivity indices can be computed analytically by the coefficients of the surrogate model built by SVR. In order to improve the performance of the SVR model, a kernel function iteration scheme is introduced further. Due to the excellent generalization performance and structural risk minimization principle, the SVR possesses the advantages of solving non-linear prediction problems with small samples. Thus, the proposed method is capable of computing the Sobol’ indices with a relatively limited number of model evaluations. The proposed method is examined by several examples, and the sensitivity analysis results are compared with the sparse polynomial chaos expansion (PCE), high dimensional model representation (HDMR) and Gaussian radial basis (RBF) SVR model. The examined examples show that the proposed method is an efficient approach for GSA of complex models.