دانلود مقاله ISI انگلیسی شماره 110380
ترجمه فارسی عنوان مقاله

بهینه سازی پارامتر رگرسیون بردار پشتیبانی بر اساس الگوریتم کوینین سینوسی

عنوان انگلیسی
Parameter optimization of support vector regression based on sine cosine algorithm
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
110380 2018 40 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 91, January 2018, Pages 63-77

پیش نمایش مقاله
پیش نمایش مقاله  بهینه سازی پارامتر رگرسیون بردار پشتیبانی بر اساس الگوریتم کوینین سینوسی

چکیده انگلیسی

Time series prediction is an important part of data-driven based prognostics which are mainly based on the massive sensory data with less requirement of knowing inherent system failure mechanisms. Support Vector Regression (SVR) has achieved good performance in forecasting problems of small samples and high dimensions. However, the SVR parameters have a significant influence on forecasting performance of SVR. In our current work, a novel SCA-SVR model has been presented where sine cosine algorithm (SCA) is used to select the penalty and kernel parameters in SVR, so that the generalization performance on unknown data can be improved. To validate the proposed model, the results of the SCA-SVR algorithm were compared with those of grid search and some other meta-heuristics optimization algorithms on common used benchmark datasets. The experimental results proved that the proposed model is capable to find the optimal values of the SVR parameters and can yield promising results.