دانلود مقاله ISI انگلیسی شماره 110381
ترجمه فارسی عنوان مقاله

تابع هسته ترکیبی از رگرسیون بردار برای تحلیل حساسیت جهانی پشتیبانی می کند

عنوان انگلیسی
Mixed kernel function support vector regression for global sensitivity analysis
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
110381 2017 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Mechanical Systems and Signal Processing, Volume 96, November 2017, Pages 201-214

ترجمه کلمات کلیدی
تجزیه و تحلیل حساسیت جهانی، رگرسیون بردار پشتیبانی، تابع هسته مخلوط،
کلمات کلیدی انگلیسی
Global sensitivity analysis; Support vector regression; Mixed kernel function;
پیش نمایش مقاله
پیش نمایش مقاله  تابع هسته ترکیبی از رگرسیون بردار برای تحلیل حساسیت جهانی پشتیبانی می کند

چکیده انگلیسی

Global sensitivity analysis (GSA) plays an important role in exploring the respective effects of input variables on an assigned output response. Amongst the wide sensitivity analyses in literature, the Sobol indices have attracted much attention since they can provide accurate information for most models. In this paper, a mixed kernel function (MKF) based support vector regression (SVR) model is employed to evaluate the Sobol indices at low computational cost. By the proposed derivation, the estimation of the Sobol indices can be obtained by post-processing the coefficients of the SVR meta-model. The MKF is constituted by the orthogonal polynomials kernel function and Gaussian radial basis kernel function, thus the MKF possesses both the global characteristic advantage of the polynomials kernel function and the local characteristic advantage of the Gaussian radial basis kernel function. The proposed approach is suitable for high-dimensional and non-linear problems. Performance of the proposed approach is validated by various analytical functions and compared with the popular polynomial chaos expansion (PCE). Results demonstrate that the proposed approach is an efficient method for global sensitivity analysis.