دانلود مقاله ISI انگلیسی شماره 110384
ترجمه فارسی عنوان مقاله

مدل پیش بینی عرض سلول انفجاری گاز بر اساس رگرسیون بردار پشتیبانی

عنوان انگلیسی
Gas detonation cell width prediction model based on support vector regression
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
110384 2017 7 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Nuclear Engineering and Technology, Volume 49, Issue 7, October 2017, Pages 1423-1430

ترجمه کلمات کلیدی
طول موج انفجار، ایمنی هیدروژن، فراگیری ماشین، رگرسیون بردار پشتیبانی،
کلمات کلیدی انگلیسی
Detonation Cell Width; Hydrogen Safety; Machine Learning; Support Vector Regression;
پیش نمایش مقاله
پیش نمایش مقاله  مدل پیش بینی عرض سلول انفجاری گاز بر اساس رگرسیون بردار پشتیبانی

چکیده انگلیسی

Detonation cell width is an important parameter in hydrogen explosion assessments. The experimental data on gas detonation are statistically analyzed to establish a universal method to numerically predict detonation cell widths. It is commonly understood that detonation cell width, λ, is highly correlated with the characteristic reaction zone width, δ. Classical parametric regression methods were widely applied in earlier research to build an explicit semiempirical correlation for the ratio of λ/δ. The obtained correlations formulate the dependency of the ratio λ/δ on a dimensionless effective chemical activation energy and a dimensionless temperature of the gas mixture. In this paper, support vector regression (SVR), which is based on nonparametric machine learning, is applied to achieve functions with better fitness to experimental data and more accurate predictions. Furthermore, a third parameter, dimensionless pressure, is considered as an additional independent variable. It is found that three-parameter SVR can significantly improve the performance of the fitting function. Meanwhile, SVR also provides better adaptability and the model functions can be easily renewed when experimental database is updated or new regression parameters are considered.