دانلود مقاله ISI انگلیسی شماره 110400
ترجمه فارسی عنوان مقاله

یک مدل مبتنی بر داده ها بر مبنای تبدیل فوریه و رگرسیون بردار پشتیبانی برای پیش بینی جریان ورودی ماهانه است

عنوان انگلیسی
A data-driven model based on Fourier transform and support vector regression for monthly reservoir inflow forecasting
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
110400 2018 43 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Hydro-environment Research, Volume 18, February 2018, Pages 12-24

ترجمه کلمات کلیدی
پیش بینی جریان هدایت داده، تبدیل فوریه، رگرسیون بردار پشتیبانی،
کلمات کلیدی انگلیسی
Streamflow forecasting; Data-driven; Fourier transform; Support vector regression;
پیش نمایش مقاله
پیش نمایش مقاله  یک مدل مبتنی بر داده ها بر مبنای تبدیل فوریه و رگرسیون بردار پشتیبانی برای پیش بینی جریان ورودی ماهانه است

چکیده انگلیسی

The recent trend for data-driven streamflow forecasting is to hybridize artificial intelligence with decomposition pre-processing. In this paper, a decomposition-based data-driven model called FT-SVR that exploits both Fourier transform (FT) and support vector regression (SVR) techniques is proposed for monthly reservoir inflow forecasting and the Three Gorges Dam (TGD) located on the Yangtze River in China is taken as the case for study. As the inflow time series contains oscillations of disparate scales, FT-SVR uses FT to appropriately decompose the series into multiple decomposed components, with each component comprising of neighboring frequencies and having a clear physical meaning. SVR is employed to develop an independent forecasting model for each decomposed component. The development of each SVR model involves data normalization, input selection based on autocorrelation function and partial autocorrelation function analysis, and parameter calibration by a metaheuristic. FT-SVR is compared with three other models which are the same with FT-SVR except that one uses ensemble empirical mode decomposition, one uses singular spectrum analysis for decomposition, and the other one performs no decomposition. Experimental results demonstrate that FT-SVR is able to give almost perfect monthly inflow forecasting for the TGD and significantly outperforms the three other models, in terms of evaluation criteria including root mean squared error, correlation coefficient, mean average percentage error, Nash-Sutcliffe efficiency coefficient, and relative error of maximum/minimum monthly inflow.