دانلود مقاله ISI انگلیسی شماره 110412
ترجمه فارسی عنوان مقاله

پیش بینی سرعت باد و جهت باد با استفاده از شبکه عصبی مصنوعی، رگرسیون بردار پشتیبانی و سیستم استنتاج فازی سازگار

عنوان انگلیسی
Prediction of wind speed and wind direction using artificial neural network, support vector regression and adaptive neuro-fuzzy inference system
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
110412 2018 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Sustainable Energy Technologies and Assessments, Volume 25, February 2018, Pages 146-160

پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی سرعت باد و جهت باد با استفاده از شبکه عصبی مصنوعی، رگرسیون بردار پشتیبانی و سیستم استنتاج فازی سازگار

چکیده انگلیسی

In this study, three models of machine learning algorithms are implemented to predict wind speed, wind direction and output power of a wind turbine. The first model is multilayer feed-forward neural network (MLFFNN) that is trained with different data training algorithms. The second model is support vector regression with a radial basis function (SVR-RBF). The third model is adaptive neuro-fuzzy inference system (ANFIS) that is optimized with a partial swarm optimization algorithm (ANFIS-PSO). Temperature, pressure, relative humidity and local time are considered as input variables of the models. A large set of wind speed and wind direction data measured at 5-min, 10-min, 30-min and 1-h intervals are utilized to accurately predict wind speed and its direction for Bushehr. Energy and exergy analysis of wind energy for a wind turbine (E-44, 900 kW) is done. Also, the developed models are used to predict the output power of the wind turbine. Comparison of the statistical indices for the predicted and actual data indicate that the SVR-RBF model outperforms the MLFFNN and ANFIS-PSO models. Also, the current energy and exergy analysis presents an average of 32% energy efficiency and approximately 25% exergy efficiency of the wind turbine in the study region.