دانلود مقاله ISI انگلیسی شماره 110418
ترجمه فارسی عنوان مقاله

رگرسیون برداری بر اساس ویژگی کشویی چند منظوره برای پیش بینی تنش آبی گیاهی

عنوان انگلیسی
Multi-modal sliding window-based support vector regression for predicting plant water stress
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
110418 2017 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Knowledge-Based Systems, Volume 134, 15 October 2017, Pages 135-148

ترجمه کلمات کلیدی
تنش آبی، پردازش تصویر، شبکه عصبی عمیق رگرسیون بردار پشتیبانی، یادگیری گروهی
کلمات کلیدی انگلیسی
Water stress; Image processing; Deep neural network; Support vector regression; Ensemble learning;
پیش نمایش مقاله
پیش نمایش مقاله  رگرسیون برداری بر اساس ویژگی کشویی چند منظوره برای پیش بینی تنش آبی گیاهی

چکیده انگلیسی

Information communication technology (ICT) is required in the field of agriculture to solve problems arising because of the aging of farmers and shortage of heirs. In particular, environmental sensors and cameras are widely used in existing agricultural support systems for easy data collection. Although the traditional purpose of these systems is naive monitoring and controlling of the environment, the propagation of advanced cultivation is now expected by applying the data to machine learning and data mining technologies. Therefore, we propose a novel multi-modal sliding window-based support vector regression (multi-modal SW-SVR) method for accurate prediction of complicated water stress, which is a plant status, from two data types, namely environmental and plant image data. The proposed method includes two methodologies, SW-SVR and deep neural network (DNN) as a multi-modal feature extractor for SW-SVR. SW-SVR, which we proposed previously, is a suitable learning method for data with time-dependent characteristics, such as plant status. Moreover, we propose a new image feature, remarkable moving objects detected by adjacent optical flow (ROAF), to enable DNN to extract essential features easily for predicting water stress. Compared with existing regression models and features, the proposed multi-modal SW-SVR with ROAF demonstrates more precise and stable water stress prediction.