دانلود مقاله ISI انگلیسی شماره 110425
ترجمه فارسی عنوان مقاله

بهینه سازی رگرسیون بردار الگوریتم ژنتیکی برای پیش بینی شاخص های نگهداری ترکیب در کروماتوگرافی گاز افزایش یافته است

عنوان انگلیسی
Optimization enhanced genetic algorithm-support vector regression for the prediction of compound retention indices in gas chromatography
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
110425 2017 16 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neurocomputing, Volume 240, 31 May 2017, Pages 183-190

ترجمه کلمات کلیدی
رگرسیون بردار پشتیبانی، ساختار کمی ساختار رابطه نگهداری، پیش بینی شاخص های نگهداری، کروماتوگرافی گازی،
کلمات کلیدی انگلیسی
Support vector regression; Quantitative structure–retention relationship; Retention indices prediction; Gas chromatography;
پیش نمایش مقاله
پیش نمایش مقاله  بهینه سازی رگرسیون بردار الگوریتم ژنتیکی برای پیش بینی شاخص های نگهداری ترکیب در کروماتوگرافی گاز افزایش یافته است

چکیده انگلیسی

A new method using genetic algorithm and support vector regression with parameter optimization (GA–SVR–PO) was developed for the prediction of compound retention indices (RI) in gas chromatography. The dataset used in this work consists of 252 compounds extracted from the Molecular Operating Environment (MOE) boiling point database. Molecular descriptors were calculated by descriptor tools of the MOE software package. After removing redundant descriptors, 151 descriptors were obtained for each compound. A genetic algorithm (GA) was used to select the best subset of molecular descriptors and the best parameters of SVR to optimize the prediction performance of compound retention indices. A 10-fold cross-validation method was used to evaluate the prediction performance. We compared the performance of our proposed model with three existing methods: GA coupled with multiple linear regression (GA–MLR), the subset selected by GA–MLR used to train SVR (GA–MLR–SVR), and GA on SVR (GA–SVR). The experimental results demonstrate that our proposed GA–SVR–PO model has better predictive performance than other existing models with R2 > 0.967 and RMSE = 49.94. The prediction accuracy of GA–SVR–PO model is 96% at 10% of prediction variation.