دانلود مقاله ISI انگلیسی شماره 110428
ترجمه فارسی عنوان مقاله

یک رگرسیون فازی با رویکرد دستگاه بردار پشتیبانی برای برآورد تابش خورشیدی افقی جهانی

عنوان انگلیسی
A fuzzy regression with support vector machine approach to the estimation of horizontal global solar radiation
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
110428 2017 48 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Energy, Volume 123, 15 March 2017, Pages 229-240

پیش نمایش مقاله
پیش نمایش مقاله  یک رگرسیون فازی با رویکرد دستگاه بردار پشتیبانی برای برآورد تابش خورشیدی افقی جهانی

چکیده انگلیسی

Accurate estimation of the amount of horizontal global solar radiation for a particular field is an important input for decision processes in solar radiation investments. In this article, we focus on the estimation of yearly mean daily horizontal global solar radiation by using an approach that utilizes fuzzy regression functions with support vector machine (FRF-SVM). This approach is not seriously affected by outlier observations and does not suffer from the over-fitting problem. To demonstrate the utility of the FRF-SVM approach in the estimation of horizontal global solar radiation, we conduct an empirical study over a dataset collected in Turkey and applied the FRF-SVM approach with several kernel functions. Then, we compare the estimation accuracy of the FRF-SVM approach to an adaptive neuro-fuzzy system and a coplot supported-genetic programming approach. We observe that the FRF-SVM approach with a Gaussian kernel function is not affected by both outliers and over-fitting problem and gives the most accurate estimates of horizontal global solar radiation among the applied approaches. Consequently, the use of hybrid fuzzy functions and support vector machine approaches is found beneficial in long-term forecasting of horizontal global solar radiation over a region with complex climatic and terrestrial characteristics.