دانلود مقاله ISI انگلیسی شماره 110435
ترجمه فارسی عنوان مقاله

پیش بینی شکست توسط رگرسیون مربوطه با جستجوی بهبود گرانشی کوانتومی بهبود یافته است

عنوان انگلیسی
Failure prediction by relevance vector regression with improved quantum-inspired gravitational search
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
110435 2018 20 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Network and Computer Applications, Volume 103, 1 February 2018, Pages 171-177

ترجمه کلمات کلیدی
پردازش ابری، پیش بینی شکست ماشین بردار مربوطه، معماری امنیتی ابر،
کلمات کلیدی انگلیسی
Cloud computing; Failure prediction; Relevance vector machine; Cloud security architectures;
پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی شکست توسط رگرسیون مربوطه با جستجوی بهبود گرانشی کوانتومی بهبود یافته است

چکیده انگلیسی

Modern data centers coordinate hundreds of thousands of heterogeneous tasks aiming at providing highly reliable cloud computing services. Failure prediction is of vital importance in the analysis of cloud reliability. Recently, a novel kernel learning method called relevance vector machine (RVM) has been widely applied to solve nonlinear predicting problems and has been verified to perform well in many situations. However, it remains a great challenge for existing approaches to acquire the optimal RVM parameters. In this research, an artificial immune system is introduced into a Quantum-inspired Binary Gravitational Search Algorithm (QBGSA) in order to improve the convergence rate of standard QBGSA. In addition, a hybrid model of RVM with improved QBGSA called IQBGSA-RVM is proposed that aims to predict the failure time of cloud services. To evaluate the effectiveness of IQBGSA-RVM in failure prediction, its predicting performance is compared with that of the following algorithms, all of which employs RVM: chaotic genetic algorithms, binary gravitational search algorithms, binary particle swarm optimization, quantum-inspired binary particle swarm optimization and standard QBGSA. The experimental results show that the IQBGSA-RVM model is either comparable to the other models or it outperforms them, to say the least.