دانلود مقاله ISI انگلیسی شماره 110444
ترجمه فارسی عنوان مقاله

شبیه سازی تغییرات سطح آب زیرزمینی با استفاده از موجک ترکیبی با شبکه عصبی، رگرسیون خطی و دستگاه بردار پشتیبانی

عنوان انگلیسی
Simulation of groundwater level variations using wavelet combined with neural network, linear regression and support vector machine
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
110444 2017 40 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Global and Planetary Change, Volume 148, January 2017, Pages 181-191

ترجمه کلمات کلیدی
شبکه های عصبی تاخیر زمان، موجک، ایران، رگرسیون چند خطی، سطح آب زیرزمینی، ماشین بردار پشتیبانی،
کلمات کلیدی انگلیسی
Time delay neural networks; Wavelet; Iran; Multi linear regression; Groundwater level; Support vector machine;
پیش نمایش مقاله
پیش نمایش مقاله  شبیه سازی تغییرات سطح آب زیرزمینی با استفاده از موجک ترکیبی با شبکه عصبی، رگرسیون خطی و دستگاه بردار پشتیبانی

چکیده انگلیسی

Simulation of groundwater level (GWL) fluctuations is an important task in management of groundwater resources. In this study, the effect of wavelet analysis on the training of the artificial neural network (ANN), multi linear regression (MLR) and support vector regression (SVR) approaches was investigated, and the ANN, MLR and SVR along with the wavelet-ANN (WNN), wavelet-MLR (WLR) and wavelet-SVR (WSVR) models were compared in simulating one-month-ahead of GWL. The only variable used to develop the models was the monthly GWL data recorded over a period of 11 years from two wells in the Qom plain, Iran. The results showed that decomposing GWL time series into several sub-time series, extremely improved the training of the models. For both wells 1 and 2, the Meyer and Db5 wavelets produced better results compared to the other wavelets; which indicated wavelet types had similar behavior in similar case studies. The optimal number of delays was 6 months, which seems to be due to natural phenomena. The best WNN model, using Meyer mother wavelet with two decomposition levels, simulated one-month-ahead with RMSE values being equal to 0.069 m and 0.154 m for wells 1 and 2, respectively. The RMSE values for the WLR model were 0.058 m and 0.111 m, and for WSVR model were 0.136 m and 0.060 m for wells 1 and 2, respectively.