دانلود مقاله ISI انگلیسی شماره 110460
ترجمه فارسی عنوان مقاله

سنتز و تعیین ویژگی های کربن فعال جدید از بذر بابونه برای حذف کروم: تجزیه و تحلیل تجربی و مدل سازی با شبکه عصبی مصنوعی و رگرسیون بردار پشتیبانی

عنوان انگلیسی
Synthesis and characterization of novel activated carbon from Medlar seed for chromium removal: Experimental analysis and modeling with artificial neural network and support vector regression
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
110460 2017 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Resource-Efficient Technologies, Volume 3, Issue 3, September 2017, Pages 236-248

پیش نمایش مقاله
پیش نمایش مقاله  سنتز و تعیین ویژگی های کربن فعال جدید از بذر بابونه برای حذف کروم: تجزیه و تحلیل تجربی و مدل سازی با شبکه عصبی مصنوعی و رگرسیون بردار پشتیبانی

چکیده انگلیسی

In this study, for the first time the activated carbon has been produced from medlar seed (Mespilus germanica) via chemical activation with KOH. The carbonization process was carried out at different temperatures of 450, 550, 650 and 750°C. The Nitrogen adsorption-desorption, Fourier transform infrared spectroscopy (FTIR) and Field Emission Scanning Electron Microscope (FESEM) analyses were carried out on the adsorbents. The effect of operating parameters, such as pH, initial concentration of Cr(VI), adsorbent dosage and contact time were investigated. The experimental data showed better agreement with the Langmuir model and the maximum adsorption capacity was evaluated to be 200 mg/g. Kinetic studies indicated that the adsorption process follows the pseudo second-order model and the chemical reaction is the rate-limiting step. Thermodynamic parameters showed that the adsorption process could be considered a spontaneous (ΔG < 0), endothermic (ΔH > 0) process which leads to an increase in entropy (ΔS > 0). The application of support vector machine combined with genetic algorithm (SVM-GA) and artificial neural network (ANN) was investigated to predict the percentage of chromium removal from aqueous solution using synthesized activated carbon. The comparison of correlation coefficient (R2) related to ANN and the SVR-GA models with experimental data proved that both models were able to predict the percentage of chromium removal, by synthetic activated carbon while the SVR-GA model prediction was more accurate.