دانلود مقاله ISI انگلیسی شماره 110555
ترجمه فارسی عنوان مقاله

بهینه سازی پارامتر فرآیند تمبر با روش تجزیه و تحلیل رگرسیون چندگانه

عنوان انگلیسی
Stamping Process Parameter Optimization with Multiple Regression Analysis Approach
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
110555 2018 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Materials Today: Proceedings, Volume 5, Issue 2, Part 1, 2018, Pages 4498-4507

پیش نمایش مقاله
پیش نمایش مقاله  بهینه سازی پارامتر فرآیند تمبر با روش تجزیه و تحلیل رگرسیون چندگانه

چکیده انگلیسی

Stamping is very important manufacturing process used for producing component from the metal sheet. In stamping process, the force applied by a punch on the blank and make it flow into the die cavity. At the time of blank deformation, it experiences the complex stresses, tensile as well as compressive. The excessive compressive stresses of sheet metal result in wall thickening and wrinkling in flange region, while tensile stresses initiate thinning in the wall region of the cup. The excess thinning causes cracking or fracture of a sheet. The faulty process design ultimately produces nonconforming products. The successful design of stamping process involves designing of the tooling and identification of the optimum level of the process parameters. Finite Element Method (FEA) immensely used in design and analysis of the stamping process, considered as avery important tool for predicting the stresses likely to be developed in the stamped components before the tryout of the process. While multiple regression analysis (MRA) is am athematical technique used to establish are lation between the response and the predictors. The proposed methodology combines two techniques, FEA, and regression analysis to study the impact of various parameters and their interaction on the thinning of the sheet metal. Regression analysis is used to optimize the parameters to minimize the thinning of the blank. The usefulness of methodology for optimization of stamping process parameter validated with experimental production of the component.