دانلود مقاله ISI انگلیسی شماره 110617
ترجمه فارسی عنوان مقاله

تقسیم بندی خودکار و برآورد مساحت فورامین عصبی با مدل رگرسیون مرزی

عنوان انگلیسی
Automated segmentation and area estimation of neural foramina with boundary regression model
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
110617 2017 17 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Pattern Recognition, Volume 63, March 2017, Pages 625-641

ترجمه کلمات کلیدی
تقسیم بندی خودکار، برآورد منطقه، تنگی عصبی فورامینا، مدل رگرسیون مرزی، رگرسیون بردار خروجی پشتیبانی چندگانه، یادگیری چند هسته ای،
کلمات کلیدی انگلیسی
Automated segmentation; Area estimation; Neural foramina stenosis; Boundary regression model; Multiple output support vector regression; Multiple kernel learning;
پیش نمایش مقاله
پیش نمایش مقاله  تقسیم بندی خودکار و برآورد مساحت فورامین عصبی با مدل رگرسیون مرزی

چکیده انگلیسی

Accurate segmentation and area estimation of neural foramina from both CT and MR images are essential to clinical diagnosis of neural foramina stenosis. Existing clinical routine, relying on physician's purely manual segmentation, becomes very tedious, laborious, and inefficient. Automated segmentation is highly desirable but faces big challenges from diverse boundary, local weak/no boundary, and intra/inter-modality intensity inhomogeneity. In this paper, a novel boundary regression segmentation framework is proposed for fully automated and multi-modal segmentation of neural foramina. It creatively formulates the segmentation task as a boundary regression problem which models a highly nonlinear mapping function from substantially diverse neural foramina images directly to desired object boundaries. By leveraging a seamless combination of multiple output support vector regression (MSVR) and multiple kernel learning (MKL), the proposed framework enables the domain knowledge learning in a holistic fashion which successfully handles the extreme diversity posing a tremendous challenge to conventional segmentation methods. The performance evaluation was conducted on a dataset including 912 MR images and 306 CT images collected from 152 subjects. Experimental results show that the proposed automated segmentation framework is highly consistent with physician with average DSI (dice similarity index) as high as 0.9005 (CT), 0.8984 (MR), 0.8935 (MR+CT) and BD (boundary distance) as low as 0.6393 mm (CT), 0.6586 mm (MR), 0.6881 mm (MR+CT). Based on this accurate automated segmentation, the estimated areas, highly correlated to their independent ground truth, have been achieved with correlation coefficient: 0.9154 (CT) and 0.8789 (MR). Hence, the proposed approach enables an efficient, accurate and convenient tool for clinical diagnosis of neural foramina stenosis.