دانلود مقاله ISI انگلیسی شماره 110728
ترجمه فارسی عنوان مقاله

تجزیه و تحلیل احساسات از طریق سه شبکه عصبی کانولوشن توجه متفاوتی و رگرسیون سازگار متقابل

عنوان انگلیسی
Textual sentiment analysis via three different attention convolutional neural networks and cross-modality consistent regression
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
110728 2018 20 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neurocomputing, Volume 275, 31 January 2018, Pages 1407-1415

پیش نمایش مقاله
پیش نمایش مقاله  تجزیه و تحلیل احساسات از طریق سه شبکه عصبی کانولوشن توجه متفاوتی و رگرسیون سازگار متقابل

چکیده انگلیسی

Word embeddings and CNN (convolutional neural networks) architecture are crucial ingredients of sentiment analysis. However, sentiment and lexicon embeddings are rarely used and CNN is incompetent to capture global features of sentence. To this end, semantic embeddings, sentiment embeddings and lexicon embeddings are applied for texts encoding, and three different attentions including attention vector, LSTM (long short term memory) attention and attentive pooling are integrated with CNN model in this paper. Additionally, a word and its context are explored to disambiguate the meaning of the word for rich input representation. To improve the performance of three different attention CNN models, CCR (cross-modality consistent regression) and transfer learning are presented. It is worth noticing that CCR and transfer learning are used in textual sentiment analysis for the first time. Finally, some experiments on two different datasets demonstrate that the proposed attention CNN models achieve the best or the next-best results against the existing state-of-the-art models.