دانلود مقاله ISI انگلیسی شماره 111815
ترجمه فارسی عنوان مقاله

الگوریتم ژنتیک بهبود یافته برای ارسال بار اقتصادی در نیروگاه های آبی و مقایسه عملکرد جامع با روش برنامه ریزی پویا

عنوان انگلیسی
Improved genetic algorithm for economic load dispatch in hydropower plants and comprehensive performance comparison with dynamic programming method
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
111815 2017 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Hydrology, Volume 554, November 2017, Pages 306-316

ترجمه کلمات کلیدی
بار اقتصادی بارگیری، برنامه نویسی دینامیک، الگوریتم ژنتیک، فضای راه حل قابل اجرا سنجش عملکرد،
کلمات کلیدی انگلیسی
Economic load dispatching; Dynamic programming; Genetic algorithm; Feasible solution space; Performance evaluation;
پیش نمایش مقاله
پیش نمایش مقاله  الگوریتم ژنتیک بهبود یافته برای ارسال بار اقتصادی در نیروگاه های آبی و مقایسه عملکرد جامع با روش برنامه ریزی پویا

چکیده انگلیسی

This paper presents a practical genetic algorithm (GA)-based solution for solving the economic load dispatch problem (ELDP) and further compares the performance of the improved GA (IGA) with that of dynamic programming (DP). Specifically, their performance is comprehensively evaluated in terms of addressing the ELDP through a case study of 26 turbines in the Three Gorges Hydropower Plant with a focus on calculation accuracy, calculation time, and algorithm stability. Evaluation results show that the improved GA method can significantly reduce the ineffectiveness of the GA in current use and could avoid the running of the turbines in the cavitation/vibration zone, thereby ensuring the safety of the turbines during generating operations. Further, the analysis comparing the performance of the IGA and DP show that the IGA is superior to DP when a small number of turbines are involved. However, as the number of turbines increases, the IGA requires more calculation time than DP; moreover, its calculation accuracy and convergence rate are significantly reduced. It is difficult to guarantee the stability of IGA in high-dimension space even though the population grows, on account of the exponential expansion of the calculation dimension, the algorithm’s premature convergence, and the lack of a local search capability. The improvement of the GA as well as the evaluation method proposed in this paper provide a new approach for choosing and improving optimization algorithms to solve the ELDP of large-scale hydropower plants.