دانلود مقاله ISI انگلیسی شماره 111819
ترجمه فارسی عنوان مقاله

داده کاوی برای تقسیم بندی فضای دولت در برنامه نویسی پویا سازگار

عنوان انگلیسی
Data mining for state space orthogonalization in adaptive dynamic programming
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
111819 2017 27 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 76, 15 June 2017, Pages 49-58

ترجمه کلمات کلیدی
داده کاوی، طراحی و تجزیه و تحلیل آزمایش های کامپیوتری، برنامه ریزی پویا تقریبی آلودگی ازن،
کلمات کلیدی انگلیسی
Data mining; Design and analysis of computer experiments; Approximate dynamic programming; Ozone pollution;
پیش نمایش مقاله
پیش نمایش مقاله  داده کاوی برای تقسیم بندی فضای دولت در برنامه نویسی پویا سازگار

چکیده انگلیسی

ADP algorithms for continuous-state DP achieve an approximate solution through discretization of the state space and model approximations. Typical state space discretizations involve full-dimensional grids or random sampling. The former option requires exponential growth in the number of state points as the state space dimension grows, while the latter option is typically inefficient and requires an intractable number of state points. The exception is computationally-tractable ADP methods based on a design and analysis of computer experiments (DACE) approach. However, the DACE approach utilizes ideal experimental designs that are (nearly) orthogonal, and a multicollinear state space will not be appropriately represented by such ideal experimental designs. While one could directly build approximations over the multicollinear state space, the issue of unstable model approximations remains unaddressed. Our approach for handling multicollinearity employs data mining methods for two purposes: (1) to reduce the dimensionality of a DP problem and (2) to orthogonalize a multicollinear DP state space and enable the use of a computationally-efficient DACE-based ADP approach. Our results demonstrate the risk of ignoring high multicollinearity, quantified by high variance inflation factors representing model instability. Our comparisons using an air quality ozone pollution case study provide guidance on combining feature selection and feature extraction to guarantee orthogonality while achieving over 95% dimension reduction and good model accuracy.