دانلود مقاله ISI انگلیسی شماره 112110
ترجمه فارسی عنوان مقاله

برنامه ریزی سیستم های محیطی یکپارچه انرژی تحت نامطمئن بودن فاصله زمانی دوگانه

عنوان انگلیسی
Planning of integrated energy-environment systems under dual interval uncertainties
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
112110 2018 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Electrical Power & Energy Systems, Volume 100, September 2018, Pages 287-298

ترجمه کلمات کلیدی
گاز گلخانه ای، تسکین دهنده، سیستم های انرژی محیط زیست، مقیاس منطقه ای، عدم قطعیت، فاصله دوگانه،
کلمات کلیدی انگلیسی
Greenhouse gas; Mitigation; Energy-environment systems; Regional scale; Uncertainty; Dual interval;
پیش نمایش مقاله
پیش نمایش مقاله  برنامه ریزی سیستم های محیطی یکپارچه انرژی تحت نامطمئن بودن فاصله زمانی دوگانه

چکیده انگلیسی

Energy-related activities are closely linked with greenhouse-gas (GHG) emissions. Such emissions should be managed through incorporating the issues of GHG mitigation within the framework of energy-environment systems planning. However, a variety of uncertain information exists in such an integrated management system, commonly expressed as intervals and dual intervals. In addition, dynamic characteristics associated with system expansions are also an important issue that needs to be addressed. Therefore, a dual-interval mixed-integer linear programming (DMLP) model is proposed and applied to the planning of integrated energy-environment systems (IEES) when GHG-emission mitigation is considered. The DMLP-IEES model integrates interval programming, dual interval programming and integer programming. The model can handle both uncertainties presented as discrete intervals, and dual uncertainties without distribution information but rough estimations of lower and upper bounds. The applicability of the developed model is demonstrated by a case study at a regional scale. The results show that the DMLP-IEES model can use the available dual uncertain information more efficiently and the solved decision variables in dual intervals have more robustness and decision flexibility than traditional methods.