دانلود مقاله ISI انگلیسی شماره 117287
ترجمه فارسی عنوان مقاله

اختلالات ارتباطی موثر در حالت استیپ ایفا می کنند اوتیسم از اسکیزوفرنی

عنوان انگلیسی
Differences in atypical resting-state effective connectivity distinguish autism from schizophrenia
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
117287 2018 56 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : NeuroImage: Clinical, Volume 18, 2018, Pages 367-376

پیش نمایش مقاله
پیش نمایش مقاله  اختلالات ارتباطی موثر در حالت استیپ ایفا می کنند اوتیسم از اسکیزوفرنی

چکیده انگلیسی

Autism and schizophrenia share overlapping genetic etiology, common changes in brain structure and common cognitive deficits. A number of studies using resting state fMRI have shown that machine learning algorithms can distinguish between healthy controls and individuals diagnosed with either autism spectrum disorder or schizophrenia. However, it has not yet been determined whether machine learning algorithms can be used to distinguish between the two disorders. Using a linear support vector machine, we identify features that are most diagnostic for each disorder and successfully use them to classify an independent cohort of subjects. We find both common and divergent connectivity differences largely in the default mode network as well as in salience, and motor networks. Using divergent connectivity differences, we are able to distinguish autistic subjects from those with schizophrenia. Understanding the common and divergent connectivity changes associated with these disorders may provide a framework for understanding their shared cognitive deficits.