دانلود مقاله ISI انگلیسی شماره 141133
ترجمه فارسی عنوان مقاله

مدل خطای ریسک از قوانین برنامه ریزی شبکه توزیع با توجه به محدودیت تولید پراکنده

عنوان انگلیسی
Risk aversion model of distribution network planning rules considering distributed generation curtailment
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
141133 2018 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Electrical Power & Energy Systems, Volume 99, July 2018, Pages 385-393

ترجمه کلمات کلیدی
برنامه ریزی شبکه توزیع، محدودیت قدرت، شبکه های هوشمند
کلمات کلیدی انگلیسی
Distribution network planning; Power curtailment; Smart grids;
پیش نمایش مقاله
پیش نمایش مقاله  مدل خطای ریسک از قوانین برنامه ریزی شبکه توزیع با توجه به محدودیت تولید پراکنده

چکیده انگلیسی

In the coming years, the massive deployment of distributed generation connected to the distribution network may increase the required investments in the network components to prevent voltage and current violations. Generation curtailment may make it possible to defer such investments and to increase the capacity of the distribution network to accommodate new generators. Currently, investment decisions only consider classical upgrade solutions such as the reinforcement of existing assets or the creation of new ones. The valorization of generation curtailment and its integration with the planning method are a major challenge, mainly because of the high level of uncertainties. This paper focuses on the problem of reverse power flows at an HV/MV substation, which may occasionally be larger than its nominal power. We propose a stochastic algorithm, based on real generation and load profiles, to create a decision investment abacus for the Distribution System Operator (DSO). This abacus enables the DSO to simply make a trade-off between an upgrade of the HV/MV substation by adding a transformer and generation curtailment with the associated risk. We also discuss the main terms of the curtailment contract between the stakeholders and their expected efficiency in minimizing the global cost.