دانلود مقاله ISI انگلیسی شماره 147400
ترجمه فارسی عنوان مقاله

فیلتر کلمن فیلتر بیقراری با استفاده از حداکثر احتمال ریسک *

عنوان انگلیسی
Adaptive Unscented Kalman Filter using Maximum Likelihood Estimation*
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
147400 2017 6 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : IFAC-PapersOnLine, Volume 50, Issue 1, July 2017, Pages 3859-3864

پیش نمایش مقاله
پیش نمایش مقاله  فیلتر کلمن فیلتر بیقراری با استفاده از حداکثر احتمال ریسک *

چکیده انگلیسی

The purpose of this study is to develop an adaptive unscented Kalman filter (UKF) by tuning the measurement noise covariance. We use the maximum likelihood estimation (MLE) and the covariance matching (CM) method to estimate the noise covariance. The multi-step prediction errors generated by the UKF are used for covariance estimation by MLE and CM. Then we apply the two covariance estimation methods on an example application. In the example, we identify the covariance of the measurement noise for a continuous glucose monitoring (CGM) sensor. The sensor measures the subcutaneous glucose concentration for a type 1 diabetes patient. The root-mean square (RMS) error and the computation time are used to compare the performance of the two covariance estimation methods. The results indicate that as the prediction horizon expands, the RMS error for the MLE declines, while the error remains relatively large for the CM method. For larger prediction horizons, the MLE provides an estimate of the noise covariance that is less biased than the estimate by the CM method. The CM method is computationally less expensive though.