دانلود مقاله ISI انگلیسی شماره 46619
ترجمه فارسی عنوان مقاله

یک رویکرد فیلتر کالمن یکپارچه و بدون بو و بردار رگرسیون ارتباط برای باتری های لیتیوم یون عمر مفید و پیش بینی ظرفیت های کوتاه مدت باقی مانده

عنوان انگلیسی
An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction ☆
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46619 2015 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Reliability Engineering & System Safety, Volume 144, December 2015, Pages 74–82

ترجمه کلمات کلیدی
باتری یون لیتیوم ؛ پیش بینی ظرفیت؛ باقی مانده عمر مفید - رگرسیون بردار ارتباطی ؛ فیلتر کالمن بدون بو
کلمات کلیدی انگلیسی
Lithium-ion battery; Capacity prediction; Remaining useful life; Relevance vector regression; Unscented Kalman filter
پیش نمایش مقاله
پیش نمایش مقاله  یک رویکرد فیلتر کالمن یکپارچه و بدون بو و بردار رگرسیون ارتباط برای باتری های لیتیوم یون عمر مفید و پیش بینی ظرفیت های کوتاه مدت باقی مانده

چکیده انگلیسی

The gradual decreasing capacity of lithium-ion batteries can serve as a health indicator for tracking the degradation of lithium-ion batteries. It is important to predict the capacity of a lithium-ion battery for future cycles to assess its health condition and remaining useful life (RUL). In this paper, a novel method is developed using unscented Kalman filter (UKF) with relevance vector regression (RVR) and applied to RUL and short-term capacity prediction of batteries. A RVR model is employed as a nonlinear time-series prediction model to predict the UKF future residuals which otherwise remain zero during the prediction period. Taking the prediction step into account, the predictive value through the RVR method and the latest real residual value constitute the future evolution of the residuals with a time-varying weighting scheme. Next, the future residuals are utilized by UKF to recursively estimate the battery parameters for predicting RUL and short-term capacity. Finally, the performance of the proposed method is validated and compared to other predictors with the experimental data. According to the experimental and analysis results, the proposed approach has high reliability and prediction accuracy, which can be applied to battery monitoring and prognostics, as well as generalized to other prognostic applications.