دانلود مقاله ISI انگلیسی شماره 147458
ترجمه فارسی عنوان مقاله

یک مدل سفارش کاهش یافته بر اساس فیلترینگ کالمن جهت جمع آوری داده های متوالی از جریان آشفته

عنوان انگلیسی
A reduced order model based on Kalman filtering for sequential data assimilation of turbulent flows
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
147458 2017 28 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Computational Physics, Volume 347, 15 October 2017, Pages 207-234

ترجمه کلمات کلیدی
فیلتر کالمن، جریانهای آشفته شبیه سازی عددی،
کلمات کلیدی انگلیسی
Kalman Filter; Turbulent flows; Numerical simulation;
پیش نمایش مقاله
پیش نمایش مقاله  یک مدل سفارش کاهش یافته بر اساس فیلترینگ کالمن جهت جمع آوری داده های متوالی از جریان آشفته

چکیده انگلیسی

A Kalman filter based sequential estimator is presented in this work. The estimator is integrated in the structure of segregated solvers for the analysis of incompressible flows. This technique provides an augmented flow state integrating available observation in the CFD model, naturally preserving a zero-divergence condition for the velocity field. Because of the prohibitive costs associated with a complete Kalman Filter application, two model reduction strategies have been proposed and assessed. These strategies dramatically reduce the increase in computational costs of the model, which can be quantified in an augmentation of 10%–15% with respect to the classical numerical simulation. In addition, an extended analysis of the behavior of the numerical model covariance Q has been performed. Optimized values are strongly linked to the truncation error of the discretization procedure. The estimator has been applied to the analysis of a number of test cases exhibiting increasing complexity, including turbulent flow configurations. The results show that the augmented flow successfully improves the prediction of the physical quantities investigated, even when the observation is provided in a limited region of the physical domain. In addition, the present work suggests that these Data Assimilation techniques, which are at an embryonic stage of development in CFD, may have the potential to be pushed even further using the augmented prediction as a powerful tool for the optimization of the free parameters in the numerical simulation.