دانلود مقاله ISI انگلیسی شماره 24468
ترجمه فارسی عنوان مقاله

مدل رگرسیون چندگانه برای پیش بینی سریع تقاضای مصرف انرژی و حرارت

عنوان انگلیسی
Multiple regression model for fast prediction of the heating energy demand
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
24468 2013 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Energy and Buildings, Volume 57, February 2013, Pages 302–312

ترجمه کلمات کلیدی
تقاضای انرژی حرارتی - ساختمانهای مسکونی - مدل پیش بینی - عوامل اصلی -
کلمات کلیدی انگلیسی
Heating energy demand, Residential buildings, Prediction model, Main factors,
پیش نمایش مقاله
پیش نمایش مقاله  مدل رگرسیون چندگانه برای پیش بینی سریع تقاضای مصرف انرژی و حرارت

چکیده انگلیسی

Nowadays, heating energy demand has become a significant estimator used during the design stage of any new building. In this paper we are proposing a model to predict the heating energy demand, based on the main factors that influence a building's heat consumption. It was found out that these factors are: the building global heat loss coefficient (G), the south equivalent surface (SES) and the difference between the indoor set point temperature and the sol-air temperature. In the second part of this paper, multiple dynamic simulations were carried out in order to determine the values of the inputs and output data of the future prediction model. Using the obtained database, a multiple regression prediction model was further used to develop the prediction model. In the last part of this paper the model results was validated with the measured data from 17 blocks of flats. Moreover, in this article it is also shown the comparison with the results calculated using the building's energy certification methodology. A detailed error analysis showed that the model presents a very good accuracy (correlation coefficient of 0.987). In conclusion, the proposed model presents the following characteristics: three inputs and one output, simplicity, large applicability, good match with the simulations and with the energy certification calculations, human behavior correction.