دانلود مقاله ISI انگلیسی شماره 24469
ترجمه فارسی عنوان مقاله

بررسی ریاضیات دستاورد یادگیری با استفاده از طبقه بندی مجموعه ای ناهموار ترکیبی و تجزیه و تحلیل رگرسیون چندگانه

عنوان انگلیسی
Assessing mathematics learning achievement using hybrid rough set classifiers and multiple regression analysis
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
24469 2013 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 13, Issue 2, February 2013, Pages 1183–1192

ترجمه کلمات کلیدی
/موزش و پرورش ابتدایی - روش های ارزیابی - استراتژی های تدریس / یادگیری - تئوری مجموعه راف - تجزیه و تحلیل رگرسیون چندگانه -
کلمات کلیدی انگلیسی
Elementary education, Evaluation methodologies, Teaching/learning strategies, Rough set theory, Multiple regression analysis,
پیش نمایش مقاله
پیش نمایش مقاله  بررسی ریاضیات دستاورد یادگیری با استفاده از طبقه بندی مجموعه ای ناهموار ترکیبی و تجزیه و تحلیل رگرسیون چندگانه

چکیده انگلیسی

Education is recognized as the key to individual success. Particularly, elementary education is vital for providing students with basic literacy and numeracy, as well as establishing foundations in mathematics, language, science, geography, history, and other social sciences. Mathematics is fundamental to numerous fields with real life applications, including natural science, engineering, medicine, and social sciences; therefore, student mathematics-learning achievement (MLA) in elementary school is valuable. This study aims to eliminate wastage of educational resources and seek suitable hybrid models for application to education. This study proposes an integrated hybrid model based on rough set classifiers and multiple regression analysis and provides a new trial of such a hybrid model to process MLA problems for elementary schools and their teachers. The proposed model is illustrated by examining a dataset from an elementary school in Taiwan. The experimental results reveal that the proposed model outperforms the listing methods in both classification accuracy and standard deviation. The rough set LEM2 (Learning from Examples Module, version 2) algorithm generates a set of comprehensible decision rules that can be applied in a knowledge-based education system designed for interested parties. Consequently, the analytical results have important implications for strategies related to mathematics teaching/learning and support to achieve teaching goals related to mathematics education. Graphical abstract This study proposes an integrated hybrid model to provide a new trial for classifying mathematics-learning achievement (MLA) and explore influential factors of MLA in grade 4 of elementary school in Taiwan from an intelligent perspective. The proposed model comprises the following six steps and the six steps are illustrated in detail in Fig. 1 below. Full-size image (18 K)