دانلود مقاله ISI انگلیسی شماره 24470
ترجمه فارسی عنوان مقاله

بهینه سازی پیش بینی شکست بر اساس پارامترهای زمین شناسی با مقایسه تجزیه و تحلیل رگرسیون چندگانه و شبکه عصبی مصنوعی

عنوان انگلیسی
Optimizing overbreak prediction based on geological parameters comparing multiple regression analysis and artificial neural network
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
24470 2013 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Tunnelling and Underground Space Technology, Volume 38, September 2013, Pages 161–169

ترجمه کلمات کلیدی
سندبلاست - معدن زیرزمینی - شبکه های عصبی مصنوعی - تجزیه و تحلیل رگرسیون چندگانه -
کلمات کلیدی انگلیسی
Blasting, Overbreak, Underground mine, Artificial neural network, Multiple regression analysis,
پیش نمایش مقاله
پیش نمایش مقاله  بهینه سازی پیش بینی شکست بر اساس پارامترهای زمین شناسی با مقایسه تجزیه و تحلیل رگرسیون چندگانه و شبکه عصبی مصنوعی

چکیده انگلیسی

Underground mining becomes more efficient due to the technological advancements of drilling and blasting methods and the developing of highly productive mining methods that facilitate easier access to ore. In the perspective of maximizing productivity in underground mining by drilling and blasting methods, overbreak control is an essential component. The causing factors of overbreak can simply divided as blasting and geological parameters and all of the factors are nonlinearly correlated. In this paper, the blasting design of the tunnel was fixed as the standard blasting pattern and the research focus on effects of geological parameters to the overbreak phenomenon. 49 sets of rock mass rating (RMR) and overbreak data were applied to linear and nonlinear multiple regression analysis (LMRA and NMRA) and artificial neural network (ANN) to predict overbreak as input and output parameters, respectively. The performance of LMRA, NMRA, and optimized ANN models was evaluated by comparing coefficient correlations (R2) and their values are 0.694, 0.704 and 0.945, respectively, which means that the relatively high level of accuracy of the optimized ANN in comparison with LMRA and NMRA. The developed optimum overbreak predicting ANN model is suitable for establishing an overbreak warning and preventing system and it will utilize as a foundation reference for a practical drift blasting reconciliation at mines for operation improvements.