دانلود مقاله ISI انگلیسی شماره 24725
ترجمه فارسی عنوان مقاله

مقایسه شبکه عصبی و تجزیه و تحلیل رگرسیون چندگانه در ساختار سرمایه و مدل سازی

عنوان انگلیسی
A comparison of neural network and multiple regression analysis in modeling capital structure
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
24725 2008 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 35, Issue 3, October 2008, Pages 720–727

ترجمه کلمات کلیدی
ساختار سرمایه - مدل رگرسیون چندگانه - مدل شبکه عصبی مصنوعی -
کلمات کلیدی انگلیسی
Capital structure, Multiple regression model, Artificial neural network model,
پیش نمایش مقاله
پیش نمایش مقاله  مقایسه شبکه عصبی و تجزیه و تحلیل رگرسیون چندگانه در ساختار سرمایه و مدل سازی

چکیده انگلیسی

Empirical studies of the variation in debt ratios across firms have used statistical models singularly to analyze the important determinants of capital structure. Researchers, however, rarely employ non-linear models to examine the determinants and make little effort to identify a superior prediction model. This study adopts multiple linear regressions and artificial neural networks (ANN) models with seven explanatory variables of corporation’s feature and three external macro-economic control variables to analyze the important determinants of capital structures of the high-tech and traditional industries in Taiwan, respectively. Results of this study show that the determinants of capital structure are different in both industries. The major different determinants are business-risk and growth opportunities. Based on the values of RMSE, the ANN models achieve a better fit and forecast than the regression models for debt ratio, and ANNs are cable of catching sophisticated non-linear integrating effects in both industries. It seems that the relationships between debt ratio and independent variables are not linear. Managers can apply these results for their dynamic adjustment of capital structure in achieving optimality and maximizing firm’s value.