دانلود مقاله ISI انگلیسی شماره 25426
ترجمه فارسی عنوان مقاله

خطاهای پیش بینی برنامه ریزی پویا از شبکه های فازی عصبی مکرر برای تشخیص گفتار

عنوان انگلیسی
Dynamic programming prediction errors of recurrent neural fuzzy networks for speech recognition
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
25426 2009 7 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 36, Issue 3, Part 2, April 2009, Pages 6368–6374

ترجمه کلمات کلیدی
شناسایی اصطلاح - سیستم های فازی راجعه - شبکه های عصبی فازی - شبکه های فازی عصبی راجعه - تشخیص گفتار نویزدار -
کلمات کلیدی انگلیسی
Phrase recognition, Recurrent fuzzy systems, Fuzzy neural networks, Recurrent neural fuzzy networks, Noisy speech recognition,
پیش نمایش مقاله
پیش نمایش مقاله  خطاهای پیش بینی برنامه ریزی پویا از شبکه های فازی عصبی مکرر برای تشخیص گفتار

چکیده انگلیسی

This paper proposes Mandarin phrase recognition using dynamic programming (DP) prediction errors of singleton-type recurrent neural fuzzy networks (SRNFNs). This method is called DP-SRNFN. The recurrent property of SRNFN makes it suitable for processing temporal speech patterns. A Mandarin phrase comprises monosyllabic words. SRNFN training is based on the word unit. There are N w SRNFNs for modeling N w words, and each SRNFN receives the current frame feature and predicts the next one of its modeling word. In recognizing NPNP phrases, the prediction error of each trained SRNFN is computed, and DP is used to find the optimal path that maps the input frames to the best matched SRNFNs (words) for each of the NPNP phrases. The accumulated error of each phrase model is computed from its optimal path and the one with the minimum error is the recognition result. To verify DP-SRNFN performance, this study conducted experiments on recognizing 30 Mandarin phrases. SRNFN training with noisy features for phrase recognition under different noisy environments was also conducted. DP-SRNFN performance is compared with the hidden Markov models (HMMs). Results show that DP-SRNFN achieves higher recognition rates than HMM in both clean and noisy environments.