دانلود مقاله ISI انگلیسی شماره 46103
ترجمه فارسی عنوان مقاله

انطباق ناهمگنی و غیر خطی در اثر قیمت برای پیش بینی فروش نام تجاری و سود

عنوان انگلیسی
Accommodating heterogeneity and nonlinearity in price effects for predicting brand sales and profits
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46103 2015 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : European Journal of Operational Research, Volume 246, Issue 1, 1 October 2015, Pages 232–241

ترجمه کلمات کلیدی
پیش بینی - مدلسازی پاسخ فروش - عدم تجانس - انعطاف پذیری عملکرد - سود پیش بینی شده
کلمات کلیدی انگلیسی
Forecasting; Sales response modeling; Heterogeneity; Functional flexibility; Expected profits
پیش نمایش مقاله
پیش نمایش مقاله  انطباق ناهمگنی و غیر خطی در اثر قیمت برای پیش بینی فروش نام تجاری و سود

چکیده انگلیسی

We propose a hierarchical Bayesian semiparametric approach to account simultaneously for heterogeneity and functional flexibility in store sales models. To estimate own- and cross-price response flexibly, a Bayesian version of P-splines is used. Heterogeneity across stores is accommodated by embedding the semiparametric model into a hierarchical Bayesian framework that yields store-specific own- and cross-price response curves. More specifically, we propose multiplicative store-specific random effects that scale the nonlinear price curves while their overall shape is preserved. Estimation is fully Bayesian and based on novel MCMC techniques. In an empirical study, we demonstrate a higher predictive performance of our new flexible heterogeneous model over competing models that capture heterogeneity or functional flexibility only (or neither of them) for nearly all brands analyzed. In particular, allowing for heterogeneity in addition to functional flexibility can improve the predictive performance of a store sales model considerably, while incorporating heterogeneity alone only moderately improved or even decreased predictive validity. Taking into account model uncertainty, we show that the proposed model leads to higher expected profits as well as to materially different pricing recommendations.