دانلود مقاله ISI انگلیسی شماره 46139
ترجمه فارسی عنوان مقاله

پایداری دینامیکی مایع انتقال لوله با یک مدل محاسباتی نامشخص

عنوان انگلیسی
Dynamic stability of a pipe conveying fluid with an uncertain computational model
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46139 2014 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Fluids and Structures, Volume 49, August 2014, Pages 412–426

ترجمه کلمات کلیدی
تعامل مایع مایع، عدم قطعیت اندازه گیری، دینامیک تصادفی، تجزیه و تحلیل ثبات تصادفی، تجزیه و تحلیل قابلیت اطمینان
کلمات کلیدی انگلیسی
Fluid–structure interaction; Uncertainty quantification; Stochastic dynamics; Stochastic stability analysis; Reliability analysis

چکیده انگلیسی

This paper deals with the problem of a pipe conveying fluid of interest in several engineering applications, such as micro-systems or drill-string dynamics. The deterministic stability analysis developed by Paidoussis and Issid (1974) is extended to the case for which there are model uncertainties induced by modeling errors in the computational model. The aim of this work is twofold: (1) to propose a probabilistic model for the fluid–structure interaction considering modeling errors and (2) to analyze the stability and reliability of the stochastic system. The Euler–Bernoulli beam model is used to model the pipe and the plug flow model is used to take into account the internal flow in the pipe. The resulting differential equation is discretized by means of the finite element method and a reduced-order model is constructed from some eigenmodes of the beam. A probabilistic approach is used to model uncertainties in the fluid–structure interaction. The proposed strategy takes into account global uncertainties related to the noninertial coupled fluid forces (related to damping and stiffness). The resulting random eigenvalue problem is used to analyze flutter and divergence unstable modes of the system for different values of the dimensionless flow speed. The numerical results show the random response of the system for different levels of uncertainty, and the reliability of the system for different dimensionless speeds and levels of uncertainty.