دانلود مقاله ISI انگلیسی شماره 46622
ترجمه فارسی عنوان مقاله

یادگیری متریک کیسه مانند برای رگرسیون بردار پشتیبان

عنوان انگلیسی
Bagging-like metric learning for support vector regression
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46622 2014 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Knowledge-Based Systems, Volume 65, July 2014, Pages 21–30

ترجمه کلمات کلیدی
آموزش از راه دور متریک؛ پشتیبانی از رگرسیون بردار - آموزش گروه؛ کیسه؛ هسته مبتنی بر فاصله
کلمات کلیدی انگلیسی
Distance metric learning; Support vector regression; Ensemble learning; Bagging; Distance-based kernel
پیش نمایش مقاله
پیش نمایش مقاله  یادگیری متریک کیسه مانند برای رگرسیون بردار پشتیبان

چکیده انگلیسی

Metric plays an important role in machine learning and pattern recognition. Though many available off-the-shelf metrics can be selected to achieve some learning tasks at hand such as for k-nearest neighbor classification and k-means clustering, such a selection is not necessarily always appropriate due to its independence on data itself. It has been proved that a task-dependent metric learned from the given data can yield more beneficial learning performance. Inspired by such success, we focus on learning an embedded metric specially for support vector regression and present a corresponding learning algorithm termed as SVRML, which both minimizes the error on the validation dataset and simultaneously enforces the sparsity on the learned metric matrix. Further taking the learned metric (positive semi-definite matrix) as a base learner, we develop a bagging-like effective ensemble metric learning framework in which the resampling mechanism of original bagging is specially modified for SVRML. Experiments on various datasets demonstrate that our method outperforms the single and bagging-based ensemble metric learnings for support vector regression.