دانلود مقاله ISI انگلیسی شماره 46638
ترجمه فارسی عنوان مقاله

پیش بینی فاصله تقاضای برق: یک بردار پشتیبانی چارچوب مدل رگرسیون بر اساس EMD دو متغیره

عنوان انگلیسی
Interval forecasting of electricity demand: A novel bivariate EMD-based support vector regression modeling framework
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46638 2014 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Electrical Power & Energy Systems, Volume 63, December 2014, Pages 353–362

ترجمه کلمات کلیدی
اطلاعات با ارزش بازه - پیش بینی تقاضای برق؛ تجزیه حالت تجربی دومتغیره (EMD)؛ رگرسیون بردار پشتیبان (SVR)
کلمات کلیدی انگلیسی
Interval-valued data; Electricity demand forecasting; Bivariate empirical mode decomposition (BEMD); Support vector regression (SVR)
پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی فاصله تقاضای برق: یک بردار پشتیبانی چارچوب مدل رگرسیون بر اساس EMD دو متغیره

چکیده انگلیسی

Highly accurate interval forecasting of electricity demand is fundamental to the success of reducing the risk when making power system planning and operational decisions by providing a range rather than point estimation. In this study, a novel modeling framework integrating bivariate empirical mode decomposition (BEMD) and support vector regression (SVR), extended from the well-established empirical mode decomposition (EMD) based time series modeling framework in the energy demand forecasting literature, is proposed for interval forecasting of electricity demand. The novelty of this study arises from the employment of BEMD, a new extension of classical empirical model decomposition (EMD) destined to handle bivariate time series treated as complex-valued time series, as decomposition method instead of classical EMD only capable of decomposing one-dimensional single-valued time series. This proposed modeling framework is endowed with BEMD to decompose simultaneously both the lower and upper bounds time series, constructed in forms of complex-valued time series, of electricity demand on a monthly per hour basis, resulting in capturing the potential interrelationship between lower and upper bounds. The proposed modeling framework is justified with monthly interval-valued electricity demand data per hour in Pennsylvania–New Jersey–Maryland Interconnection, indicating it as a promising method for interval-valued electricity demand forecasting.