دانلود مقاله ISI انگلیسی شماره 46662
ترجمه فارسی عنوان مقاله

تعیین محل خطا در سیستم های بزرگ توزیع شده توسط تجزیه حالت تجربی و رگرسیون بردار هسته

عنوان انگلیسی
Fault locating in large distribution systems by empirical mode decomposition and core vector regression
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46662 2014 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Electrical Power & Energy Systems, Volume 58, June 2014, Pages 215–225

ترجمه کلمات کلیدی
رگرسیون بردار هسته - تجزیه حالت تجربی؛ شبکه توزیع؛ طیف انرژی؛ تعیین محل خطا ؛ فرکانس مشخصه مسیر
کلمات کلیدی انگلیسی
Core vector regression; Empirical mode decomposition; Distribution network; Energy spectrum; Fault locating; Path characteristic frequency
پیش نمایش مقاله
پیش نمایش مقاله  تعیین محل خطا در سیستم های بزرگ توزیع شده توسط تجزیه حالت تجربی و رگرسیون بردار هسته

چکیده انگلیسی

This paper proposes an intelligent fault locating method using a new signal analysis technique called Empirical Mode Decomposition (EMD) and Core Vector Regression (CVR) for large distribution systems. The conventional fault locators are based on the measurement of post-fault line impedance suffering from the factors such as path fault impedance, system configuration and line loading, so that they have low accuracy. On the other hand, because of the vast range of resistances, the negative impact of damping factors affects the performance of travelling wave-based fault locators in large distribution systems. To overcome these problems, this paper uses a minimum measuring device to meet the acceptable observation of transient waves and presents a novel method for locating phase to ground faults in a large distribution system using CVR. Inspecting the energy content of transient voltage around the path characteristic frequencies by EMD can provide a suitable fault pattern to CVR. Training of the proposed algorithm needs little time and small amount of memory in comparison with the existing methods. Presented algorithm is examined on IEEE 34-bus test system which shows satisfactory results. Then, the results are compared with the method of recent papers based on Artificial Neural Networks (ANNs).