دانلود مقاله ISI انگلیسی شماره 46713
ترجمه فارسی عنوان مقاله

پتانسیل رگرسیون بردار پشتیبانی مبتنی بر تابع شعاعی برای تشخیص بیماری سیب

عنوان انگلیسی
Potential of radial basis function-based support vector regression for apple disease detection
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46713 2014 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Measurement, Volume 55, September 2014, Pages 512–519

ترجمه کلمات کلیدی
بیماری های گیاهی، پردازش تصویر، شبکه های عصبی مصنوعی، ماشین بردار پشتیبانی
کلمات کلیدی انگلیسی
Plant disease; Image processing; Artificial neural networks; Support vector machine

چکیده انگلیسی

Plant pathologists detect diseases directly with the naked eye. However, such detection usually requires continuous monitoring, which is time consuming and very expensive on large farms. Therefore, seeking rapid, automated, economical, and accurate methods of plant disease detection is very important. In this study, three different apple diseases appearing on leaves, namely Alternaria, apple black spot, and apple leaf miner pest were selected for detection via image processing technique. This paper presents three soft-computing approaches for disease classification, of artificial neural networks (ANNs), and support vector machines (SVMs). Following sampling, the infected leaves were transferred to the laboratory and then leaf images were captured under controlled light. Next, K-means clustering was employed to detect infected regions. The images were then processed and features were extracted. The SVM approach provided better results than the ANNs for disease classification.