دانلود مقاله ISI انگلیسی شماره 46745
ترجمه فارسی عنوان مقاله

آموزش رگرسیون بردار پشتیبان لاگرانژی دوقلو از طریق حداقل سازی محدب نامحدود

عنوان انگلیسی
Training Lagrangian twin support vector regression via unconstrained convex minimization
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46745 2014 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Knowledge-Based Systems, Volume 59, March 2014, Pages 85–96

ترجمه کلمات کلیدی
روشهای تکراری بر مبنای گرادیان - تقریب صاف - پشتیبانی از رگرسیون بردار - رگرسیون بردار پشتیبان دوقلو - حداقل سازی محدب نامحدود
کلمات کلیدی انگلیسی
Generalized Hessian; Gradient based iterative methods; Smooth approximation; Support vector regression; Twin support vector regression; Unconstrained convex minimization
پیش نمایش مقاله
پیش نمایش مقاله  آموزش رگرسیون بردار پشتیبان لاگرانژی دوقلو از طریق حداقل سازی محدب نامحدود

چکیده انگلیسی

In this paper, a new unconstrained convex minimization problem formulation is proposed as the Lagrangian dual of the 2-norm twin support vector regression (TSVR). The proposed formulation leads to two smaller sized unconstrained minimization problems having their objective functions piece-wise quadratic and differentiable. It is further proposed to apply gradient based iterative method for solving them. However, since their objective functions contain the non-smooth ‘plus’ function, two approaches are taken: (i) either considering their generalized Hessian or introducing a smooth function in place of the ‘plus’ function, and applying Newton–Armijo algorithm; (ii) obtaining their critical points by functional iterative algorithm. Computational results obtained on a number of synthetic and real-world benchmark datasets clearly illustrate the superiority of the proposed unconstrained Lagrangian twin support vector regression formulation as comparable generalization performance is achieved with much faster learning speed in accordance with the classical support vector regression and TSVR.