دانلود مقاله ISI انگلیسی شماره 46832
ترجمه فارسی عنوان مقاله

یکپارچه سازی پشتیبانی رگرسیون برداری با بهینه سازی ازدحام ذرات برای مدل سازی عددی برای شکوفه جلبک آب شیرین

عنوان انگلیسی
Integrating Support Vector Regression with Particle Swarm Optimization for numerical modeling for algal blooms of freshwater ☆
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46832 2015 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Mathematical Modelling, Volume 39, Issue 19, 1 October 2015, Pages 5907–5916

ترجمه کلمات کلیدی
شکوفایی جلبکی - فراوانی فیتوپلانکتون - رگرسیون بردار پشتیبان - بهینه سازی ازدحام ذرات - مدل های پیش بینی
کلمات کلیدی انگلیسی
Algal bloom; Phytoplankton abundance; Support Vector Regression; Particle Swarm Optimization; Prediction and forecast models
پیش نمایش مقاله
پیش نمایش مقاله  یکپارچه سازی پشتیبانی رگرسیون برداری با بهینه سازی ازدحام ذرات برای مدل سازی عددی برای شکوفه جلبک آب شیرین

چکیده انگلیسی

Algae-releasing cyanotoxins are cancer-causing and very harmful to the human being. Therefore, it is of great significance to model how the algae population dynamically changes in freshwater reservoirs. But the practical modeling is very difficult because water variables and their internal mechanism are very complicated and non-linear. So, in order to alleviate the algal bloom problems in Macau Main Storage Reservoir (MSR), this work proposes and develops a hybrid intelligent model combining Support Vector Regression (SVR) and Particle Swarm Optimization (PSO) to yield optimal control of parameters that predict and forecast the phytoplankton dynamics. In this process, collected data for current month’s variables and previous months’ variables are used for model predict and forecast, respectively. In the correlation analysis of 23 water variables that monitored monthly, 15 variables such as alkalinity, Bicarbonate (HCO3-), dissolved oxygen (DO), total nitrogen (TN), turbidity, conductivity, nitrate, suspended solid (SS) and total organic carbon (TOC) are selected, and data from 2001 to 2008 for each of these selected variables are used for training, while data from 2009 to 2011 which are the most recent three years are used for testing. It can be seen from the numerical results that the prediction and forecast powers are respectively estimated at approximately 0.767 and 0.876, and naturally it can be concluded that the newly proposed PSO–SVR is working well and can be adopted for further studies.