دانلود مقاله ISI انگلیسی شماره 46833
ترجمه فارسی عنوان مقاله

پیش بینی سرعت باد برای مزارع بادی: یک روش مبتنی بر رگرسیون برداری پشتیبان

عنوان انگلیسی
Wind speed forecasting for wind farms: A method based on support vector regression
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46833 2016 20 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Renewable Energy, Volume 85, January 2016, Pages 790–809

ترجمه کلمات کلیدی
پیش بینی سرعت بادی - پشتیبانی از رگرسیون بردار - الگوریتم های ژنتیکی - تجزیه و تحلیل غیر خطی
کلمات کلیدی انگلیسی
Wind speed forecasting; Phase space reconstruction; Support vector regression; Genetic algorithms; Non-linear analysis
پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی سرعت باد برای مزارع بادی: یک روش مبتنی بر رگرسیون برداری پشتیبان

چکیده انگلیسی

In this paper, a hybrid methodology based on Support Vector Regression for wind speed forecasting is proposed. Using the autoregressive model called Time Delay Coordinates, feature selection is performed by the Phase Space Reconstruction procedure. Then, a Support Vector Regression model is trained using univariate wind speed time series. Parameters of Support Vector Regression are tuned by a genetic algorithm. The proposed method is compared against the persistence model, and autoregressive models (AR, ARMA, and ARIMA) tuned by Akaike's Information Criterion and Ordinary Least Squares method. The stationary transformation of time series is also evaluated for the proposed method. Using historical wind speed data from the Mexican Wind Energy Technology Center (CERTE) located at La Ventosa, Oaxaca, México, the accuracy of the proposed forecasting method is evaluated for a whole range of short termforecasting horizons (from 1 to 24 h ahead). Results show that, forecasts made with our method are more accurate for medium (5–23 h ahead) short term WSF and WPF than those made with persistence and autoregressive models.