دانلود مقاله ISI انگلیسی شماره 46834
ترجمه فارسی عنوان مقاله

یک مدل رگرسیون بردار پشتیبان برای پیش بینی نرخ نفوذ ماشین آلات خسته کننده تونل

عنوان انگلیسی
A support vector regression model for predicting tunnel boring machine penetration rates
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46834 2014 16 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Rock Mechanics and Mining Sciences, Volume 72, December 2014, Pages 214–229

ترجمه کلمات کلیدی
عملکرد TBM - نرخ نفوذ - تونل انتقال آب کوئینز
کلمات کلیدی انگلیسی
TBM performance; Penetration rate; SVR; Queens Water Tunnel
پیش نمایش مقاله
پیش نمایش مقاله  یک مدل رگرسیون بردار پشتیبان برای پیش بینی نرخ نفوذ ماشین آلات خسته کننده تونل

چکیده انگلیسی

With widespread increasing applications of mechanized tunneling in almost all ground conditions, prediction of tunnel boring machine (TBM) performance is required for time planning, cost control and choice of excavation method in order to make tunneling economical. Penetration rate is a principal measure of full-face TBM performance and is used to evaluate the feasibility of the machine and predict advance rate of excavation. This research aims at developing a regression model to predict penetration rate of TBM in hard rock conditions based on a new artificial intelligence (AI) algorithm namely support vector regression (SVR). For this purpose, the Queens Water Tunnel, in New York City, was selected as a case study to test the proposed model. In order to find out the optimum values of the parameters and prevent over-fitting, 80% of the total data were selected randomly for training set and the rest were kept for testing the model. According to the results, it can be said that the proposed model is a useful and reliable means to predict TBM penetration rate provided that a suitable dataset exists. From the prediction results of training and testing samples, the squared correlation coefficient (R2) between the observed and predicted values of the proposed model was obtained 0.99 and 0.95, respectively, which shows a high conformity between predicted and actual penetration rate.