دانلود مقاله ISI انگلیسی شماره 53050
ترجمه فارسی عنوان مقاله

فیلتر کالمن مبتنی بر شبکه عصبی عود پایین بعدی برای تقویت گفتار

عنوان انگلیسی
Low-dimensional recurrent neural network-based Kalman filter for speech enhancement ☆
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
53050 2015 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neural Networks, Volume 67, July 2015, Pages 131–139

ترجمه کلمات کلیدی
شبکه های عصبی راجعه - گفتار - نویز غیر گوسی؛ برآورد نویز محدود
کلمات کلیدی انگلیسی
Recurrent neural network; Speech enhancement; Non-Gaussian noise; Noise-constrained estimation
پیش نمایش مقاله
پیش نمایش مقاله  فیلتر کالمن مبتنی بر شبکه عصبی عود پایین بعدی برای تقویت گفتار

چکیده انگلیسی

This paper proposes a new recurrent neural network-based Kalman filter for speech enhancement, based on a noise-constrained least squares estimate. The parameters of speech signal modeled as autoregressive process are first estimated by using the proposed recurrent neural network and the speech signal is then recovered from Kalman filtering. The proposed recurrent neural network is globally asymptomatically stable to the noise-constrained estimate. Because the noise-constrained estimate has a robust performance against non-Gaussian noise, the proposed recurrent neural network-based speech enhancement algorithm can minimize the estimation error of Kalman filter parameters in non-Gaussian noise. Furthermore, having a low-dimensional model feature, the proposed neural network-based speech enhancement algorithm has a much faster speed than two existing recurrent neural networks-based speech enhancement algorithms. Simulation results show that the proposed recurrent neural network-based speech enhancement algorithm can produce a good performance with fast computation and noise reduction.