دانلود مقاله ISI انگلیسی شماره 53058
ترجمه فارسی عنوان مقاله

تجزیه و تحلیل زمان فرکانس بر اساس فیلتر کالمن VOLD و جدایی انرژی مرتبه بالاتر برای تشخیص عیب توربین های بادی گیربکس سیاره ای تحت شرایط غیر ثابت

عنوان انگلیسی
Time–frequency analysis based on Vold-Kalman filter and higher order energy separation for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
53058 2016 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Renewable Energy, Volume 85, January 2016, Pages 45–56

ترجمه کلمات کلیدی
توربین های بادی؛ گیربکس های سیاره ای - تشخیص خطا؛ فیلتر کالمن VOLD ؛ جدایی انرژی مرتبه بالاتر - تجزیه و تحلیل زمان فرکانس
کلمات کلیدی انگلیسی
Wind turbines; Planetary gearbox; Fault diagnosis; Vold-Kalman filter; Higher order energy separation; Time–frequency analysis
پیش نمایش مقاله
پیش نمایش مقاله  تجزیه و تحلیل زمان فرکانس بر اساس فیلتر کالمن VOLD و جدایی انرژی مرتبه بالاتر برای تشخیص عیب توربین های بادی گیربکس سیاره ای تحت شرایط غیر ثابت

چکیده انگلیسی

Planetary gearbox fault diagnosis under nonstationary conditions is important for many engineering applications in general and for wind turbines in particular because of their time-varying operating conditions. This paper focuses on the identification of time-varying characteristic frequencies from complex nonstationary vibration signals for fault diagnosis of wind turbines under nonstationary conditions. We propose a time–frequency analysis method based on the Vold-Kalman filter and higher order energy separation (HOES) to extract fault symptoms. The Vold-Kalman filter is improved such that it is encoders/tachometers-free. It can decompose an arbitrarily complex signal into mono-components without resorting to speed inputs, thus satisfying the mono-component requirement by the HOES algorithm. The HOES is then used to accurately estimate the instantaneous frequency because of its high adaptability to local signal changes. The derived time–frequency distribution features fine resolution without cross-term interferences and thus facilitates extracting time-varying frequency components from highly complex and nonstationary signals. The method is illustrated and validated by analyzing simulated and experimental signals of a planetary gearbox in a wind turbine test rig under nonstationary running conditions. The results have shown that the method is effective in detecting both distributed (wear on every tooth) and localized (chipping on one tooth) gear faults.