دانلود مقاله ISI انگلیسی شماره 53083
ترجمه فارسی عنوان مقاله

فیلتر کالمن بدون بو قوی با اقتباس از فرایند و اندازه گیری کوواریانس سر و صدا

عنوان انگلیسی
Robust unscented Kalman filter with adaptation of process and measurement noise covariances
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
53083 2016 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Digital Signal Processing, Volume 48, January 2016, Pages 93–103

ترجمه کلمات کلیدی
انطباق؛ فیلتر کالمن بدون بو - فیلتر مارتین ؛ ناوبری نسبی؛ ردیابی ربات بازوی
کلمات کلیدی انگلیسی
Adaptation; Unscented Kalman filter; Masreliez–Martin filter; Relative navigation; Robot arm tracking
پیش نمایش مقاله
پیش نمایش مقاله  فیلتر کالمن بدون بو قوی با اقتباس از فرایند و اندازه گیری کوواریانس سر و صدا

چکیده انگلیسی

Unscented Kalman filter (UKF) has been extensively used for state estimation of nonlinear stochastic systems, which suffers from performance degradation and even divergence when the noise distribution used in the UKF and the truth in a real system are mismatched. For state estimation of nonlinear stochastic systems with non-Gaussian measurement noise, the Masreliez–Martin extended Kalman filter (EKF) gives better state estimates in relation to the standard EKF. However, the process noise and the measurement noise covariance matrices should be known, which is impractical in applications. This paper presents a robust Masreliez–Martin UKF which can provide reliable state estimates in the presence of both unknown process noise and measurement noise covariance matrices. Two numerical examples involving relative navigation of spacecrafts demonstrate that the proposed filter can provide improved state estimation performance over existing robust filtering approaches. Vision-aided robot arm tracking experiments are also provided to show the effectiveness of the proposed approach.