دانلود مقاله ISI انگلیسی شماره 92841
ترجمه فارسی عنوان مقاله

استفاده از ژنراتور عددی تصادفی در الگوریتم ژنتیک برای بهبود مدل بارش باران و رواناب

عنوان انگلیسی
Application of random number generators in genetic algorithms to improve rainfall-runoff modelling
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
92841 2017 6 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Hydrology, Volume 553, October 2017, Pages 350-355

ترجمه کلمات کلیدی
الگوریتم ژنتیک، بهینه سازی، مدل سازی رواناب، مولد تصادفی
کلمات کلیدی انگلیسی
Genetic algorithm; Optimisation; Rainfall-runoff modeling; Random generator;
پیش نمایش مقاله
پیش نمایش مقاله  استفاده از ژنراتور عددی تصادفی در الگوریتم ژنتیک برای بهبود مدل بارش باران و رواناب

چکیده انگلیسی

The efficient calibration of rainfall-runoff models is a difficult issue, even for experienced hydrologists. Therefore, fast and high-quality model calibration is a valuable improvement. This paper describes a novel methodology and software for the optimisation of a rainfall-runoff modelling using a genetic algorithm (GA) with a newly prepared concept of a random number generator (HRNG), which is the core of the optimisation. The GA estimates model parameters using evolutionary principles, which requires a quality number generator. The new HRNG generates random numbers based on hydrological information and it provides better numbers compared to pure software generators. The GA enhances the model calibration very well and the goal is to optimise the calibration of the model with a minimum of user interaction. This article focuses on improving the internal structure of the GA, which is shielded from the user. The results that we obtained indicate that the HRNG provides a stable trend in the output quality of the model, despite various configurations of the GA. In contrast to previous research, the HRNG speeds up the calibration of the model and offers an improvement of rainfall-runoff modelling.