دانلود مقاله ISI انگلیسی شماره 97946
ترجمه فارسی عنوان مقاله

روش های محاسباتی برای برآورد مدل های چندجمله ای، توزیع شده و لیدیت توزیع شده که برای داده های نیمه جمع

عنوان انگلیسی
Computational methods for estimating multinomial, nested, and cross-nested logit models that account for semi-aggregate data
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
97946 2018 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Choice Modelling, Volume 26, March 2018, Pages 28-40

ترجمه کلمات کلیدی
مدل انتخابی گسسته، داده های نیمه جمع، مدل های انتخابی هواپیمایی،
کلمات کلیدی انگلیسی
Discrete choice models; Semi-aggregate data; Airline itinerary choice models;
پیش نمایش مقاله
پیش نمایش مقاله  روش های محاسباتی برای برآورد مدل های چندجمله ای، توزیع شده و لیدیت توزیع شده که برای داده های نیمه جمع

چکیده انگلیسی

We present a summary of important computational issues and opportunities that arise from the use of semi-aggregate data (where the explanatory data for choice scenarios are not necessarily unique for each decision-maker) in discrete choice models. These data are encountered with large transactional databases that have limited consumer information, a common feature in some transportation planning applications, such as airline itinerary choice modeling. We developed a freeware software package called Larch, written in Python and C++, to take advantage of these kind of data to greatly speed the estimation of discrete choice model parameters. Benchmarking experiments against Stata (a commonly used commercial package), Biogeme (a commonly used freeware package), and ALOGIT (a highly specialized commercial package for discrete choice modeling) based on an industry dataset for airline itinerary choice modeling applications shows that the size of the input estimation files are 50–100 times larger in Stata and Biogeme, respectively. Estimation times are also much faster in ALOGIT and Larch; e.g., for a small itinerary choice problem, a multinomial logit model estimated in ALOGIT or Larch converged in less than one second whereas the same model took almost 15 seconds in Stata and more than three minutes in Biogeme.