دانلود مقاله ISI انگلیسی شماره 100643
ترجمه فارسی عنوان مقاله

شناسایی تأثیر عوامل اصلی بر تنظیمات موضوع در رسانه های اجتماعی آنلاین: رویکرد بی پارسی سلسله مراتبی

عنوان انگلیسی
Identifying impact of intrinsic factors on topic preferences in online social media: A nonparametric hierarchical Bayesian approach
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
100643 2018 16 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volume 423, January 2018, Pages 219-234

ترجمه کلمات کلیدی
رسانه های اجتماعی، اولویت موضوع، عامل ذاتی، مدل بیسین سلسله مراتبی غیر پارامتری،
کلمات کلیدی انگلیسی
Social media; Topic preference; Intrinsic factor; Nonparametric hierarchical Bayesian model;
پیش نمایش مقاله
پیش نمایش مقاله  شناسایی تأثیر عوامل اصلی بر تنظیمات موضوع در رسانه های اجتماعی آنلاین: رویکرد بی پارسی سلسله مراتبی

چکیده انگلیسی

Social media offers a new communication channel for users and affords an interactive opportunity between users and the firms about the products and the brands. Understanding what topics are important to users and the corresponding internal motivation is crucial for managers to successfully engage customers and promote business through social media. Assuming topic preference is the outcome of intrinsic factors such as gender, age and personality traits, this paper proposes an improved nonparametric hierarchical Bayesian topic (NHBT) model to investigate the multiple-to-multiple generative relationships from intrinsic factors to topic preferences. The proposed NHBT model employs a three-level generation framework based on Dirichlet process to study the impact of intrinsic factors on users topic preference. Our study of Facebook data shows that NHBT model is able to draw valuable latent topics (e.g. music band, chemical biology, cosplay) from the open social media environment, and reveal the internal motivation for users topic selection behaviors (e.g. users with low conscientiousness and high extraversion personality prefer topics about campus party). Our experiments also show that NHBT model can identify the intrinsic factors dominating topic preferences for individual users, and provide foundations to predict the intrinsic factors for new user generated contents.