دانلود مقاله ISI انگلیسی شماره 110403
ترجمه فارسی عنوان مقاله

انحراف هرج و مرج چند ضلعی پراکنده برای تجزیه و تحلیل حساسیت جهانی بر اساس رگرسیون بردار پشتیبانی

عنوان انگلیسی
Adaptive sparse polynomial chaos expansions for global sensitivity analysis based on support vector regression
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
110403 2018 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers & Structures, Volume 194, 1 January 2018, Pages 86-96

ترجمه کلمات کلیدی
رگرسیون بردار پشتیبانی، گسترش هرج و مرج پراکنده، تجزیه و تحلیل حساسیت جهانی، تابع هسته تطبیقی
کلمات کلیدی انگلیسی
Support vector regression; Sparse polynomial chaos expansion; Global sensitivity analysis; Adaptive kernel function;
پیش نمایش مقاله
پیش نمایش مقاله  انحراف هرج و مرج چند ضلعی پراکنده برای تجزیه و تحلیل حساسیت جهانی بر اساس رگرسیون بردار پشتیبانی

چکیده انگلیسی

In the context of uncertainty analysis, Polynomial chaos expansion (PCE) has been proven to be a powerful tool for developing meta-models in a wide range of applications, especially for sensitivity analysis. But the computational cost of classic PCE grows exponentially with the size of the input variables. An efficient approach to address this problem is to build a sparse PCE. In this paper, a full PCE meta-model is first developed based on support vector regression (SVR) technique using an orthogonal polynomials kernel function. Then an adaptive algorithm is proposed to select the significant basis functions from the kernel function. The selection criterion is based on the variance contribution of each term to the model output. In the adaptive algorithm, an elimination procedure is used to delete the non-significant bases, and a selection procedure is used to select the important bases. Due to the structural risk minimization principle employing by SVR model, the proposed method provides better generalization ability compared to the common least square regression algorithm. The proposed method is examined by several examples and the global sensitivity analysis is performed. The results show that the proposed method establishes accurate meta-model for global sensitivity analysis of complex models.