دانلود مقاله ISI انگلیسی شماره 110421
ترجمه فارسی عنوان مقاله

یک مدل پیش بینی فضایی و زمانی بر اساس رگرسنج ماشین بردار پشتیبانی: کربن سیاه و سفید در سه کشور نیو انگلند

عنوان انگلیسی
A spatio-temporal prediction model based on support vector machine regression: Ambient Black Carbon in three New England States
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
110421 2017 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Environmental Research, Volume 159, November 2017, Pages 427-434

ترجمه کلمات کلیدی
کربن سیاه، آلودگی هوا، پیش بینی، رگرسیون بردار پشتیبانی، فراگیری ماشین،
کلمات کلیدی انگلیسی
Black Carbon; Air pollution; Prediction; Support Vector Regression; Machine learning;
پیش نمایش مقاله
پیش نمایش مقاله  یک مدل پیش بینی فضایی و زمانی بر اساس رگرسنج ماشین بردار پشتیبانی: کربن سیاه و سفید در سه کشور نیو انگلند

چکیده انگلیسی

Fine ambient particulate matter has been widely associated with multiple health effects. Mitigation hinges on understanding which sources are contributing to its toxicity. Black Carbon (BC), an indicator of particles generated from traffic sources, has been associated with a number of health effects however due to its high spatial variability, its concentration is difficult to estimate. We previously fit a model estimating BC concentrations in the greater Boston area; however this model was built using limited monitoring data and could not capture the complex spatio-temporal patterns of ambient BC. In order to improve our predictive ability, we obtained more data for a total of 24,301 measurements from 368 monitors over a 12 year period in Massachusetts, Rhode Island and New Hampshire. We also used Nu-Support Vector Regression (nu-SVR) – a machine learning technique which incorporates nonlinear terms and higher order interactions, with appropriate regularization of parameter estimates. We then used a generalized additive model to refit the residuals from the nu-SVR and added the residual predictions to our earlier estimates. Both spatial and temporal predictors were included in the model which allowed us to capture the change in spatial patterns of BC over time. The 10 fold cross validated (CV) R2 of the model was good in both cold (10-fold CV R2 = 0.87) and warm seasons (CV R2 = 0.79). We have successfully built a model that can be used to estimate short and long-term exposures to BC and will be useful for studies looking at various health outcomes in MA, RI and Southern NH.