دانلود مقاله ISI انگلیسی شماره 110478
ترجمه فارسی عنوان مقاله

حداقل مربعات تقریبا نیمه تقسیم شده: یک رگرسیون خطی غیر قطعی

عنوان انگلیسی
Segmented concave least squares: A nonparametric piecewise linear regression
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
110478 2018 22 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : European Journal of Operational Research, Volume 266, Issue 2, 16 April 2018, Pages 585-594

ترجمه کلمات کلیدی
تجزیه و تحلیل تصمیم گیری، حداقل مربعات تقریبی، قیمت گذاری هیدونیک، حداقل مربعات معمولی، فنلاند،
کلمات کلیدی انگلیسی
Decision analysis; Concave least squares; Hedonic pricing; Ordinary least squares; Finland;
پیش نمایش مقاله
پیش نمایش مقاله  حداقل مربعات تقریبا نیمه تقسیم شده: یک رگرسیون خطی غیر قطعی

چکیده انگلیسی

In this paper, segmented concave least squares (SCLS) is introduced. SCLS is a nonparametric piecewise linear regression problem in which the estimated function is (monotonic) concave and the number of linear segments (k) is pre-specified. Ordinary least squares (k = 1) and concave least squares (k = n, the number of observations) are two extreme cases of this problem. An application of SCLS is to estimate a hedonic function. Using this method, observations are categorized into k groups and a piecewise linear hedonic function is estimated such that there is one linear segment for every group. The estimated hedonic function holds the principle of diminishing marginal utility. In this paper, SCLS is used to categorize hotels in Finland into three groups. A trade-off between the number of groups and the goodness of fit measure is used to determine the number of groups. Based on the similarities of the pricing methods, hotels in the sample are endogenously classified and the shadow prices for each group are calculated. The results reveal that the hotels do not value hotel attributes similarly and there are significant differences among groups. Hedonic pricing model via SCLS provides a novel categorization of hotels that cannot be obtained by using ordinary least squares.