دانلود مقاله ISI انگلیسی شماره 110492
ترجمه فارسی عنوان مقاله

تجزیه و تحلیل محدوده رگرسیون خطی موضعی برای استخراج ویژگی

عنوان انگلیسی
Locality-regularized linear regression discriminant analysis for feature extraction
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
110492 2018 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volume 429, March 2018, Pages 164-176

پیش نمایش مقاله
پیش نمایش مقاله  تجزیه و تحلیل محدوده رگرسیون خطی موضعی برای استخراج ویژگی

چکیده انگلیسی

Locality-regularized linear regression classification (LLRC) is an effective classifier that shows great potential for face recognition. However, the original feature space cannot guarantee the classification efficiency of LLRC. To alleviate this problem, we propose a novel dimensionality reduction method called locality-regularized linear regression discriminant analysis (LLRDA) for feature extraction. The proposed LLRDA is developed according to the decision rule of LLRC and seeks to generate a subspace that is discriminant for LLRC. Specifically, the intra-class and inter-class local reconstruction scatters are first defined to characterize the compactness and separability of samples, respectively. Then, the objective function for LLRDA is derived by maximizing the inter-class local reconstruction scatter and simultaneously minimizing the intra-class local reconstruction scatter. Extensive experimental results on CMU PIE, ORL, FERET, and Yale-B face databases validate the effectiveness of our proposed method.